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1. Introduction

Understanding closed string tachyons and their condensation is still a challenging problem

in string theory. Basically, people seem to believe that an analogous phenomena with

the case of open string tachyons would occur even for the case of closed string tachyons.

That is, a perturbative vacuum, which has closed string tachyons, of a string theory is an

unstable “state” in a string theory with a stable vacuum, for example, a superstring. The

stabilization of the tachyonic vacuum would be realized by a condensation of the closed

string tachyons. There were preliminary works on this subject [1].

This line of thought is acceptable with ease when the tachyons are localized around

some region of the target space at which the environment is different from other re-

gions. One such example which has been studied intensively is string theory on non-

supersymmetric orbifolds [2]. In such a case, tachyons are localized around the orbifold

singularity, so one can regard that the singularity is an unstable object. Then it is nat-

ural to expect that a condensation of the tachyons would get rid of the singularity in

order to stabilize the theory. It has been checked in different ways [2 – 4] that this kind of

mechanism actually exists. However, the techniques used in the analyses have a common

limitation; they can apply only to cases in which a perturbation of the worldsheet theory

by a tachyon vertex operator does not change the central charge. It has been believed that

an RG flow induced by a tachyon vertex operator can be a guide to find the final state of
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a condensation of the tachyon. Therefore, the final state of the condensation can be de-

scribed by a string theory only if the central charge is kept fixed during the condensation.

As a result, closed string tachyons localized in a non-compact space has been understood

comparatively, but the other tachyons, namely, tachyons localized in a compact space and

bulk tachyons, remain to be understood. Recently, there appear some papers on closed

string tachyon condensations [5 – 10].

In our previous paper [11], we argued closed string tachyons localized in compact

spaces. We related on-shell tachyon condensations to RG flows of two-dimensional gravity

theories (two-dimensional field theories coupled to gravity), and proposed a final state of a

condensation for some explicit examples of tachyonic string theory. We argued a conden-

sation starting from a critical string (string without a non-trivial dilaton background), but

in this case there is a difficulty in determining which is the time direction, since the RG

flow is in fact related to an evolution along the Euclideanized time. Although it would be

reasonable to expect that a proper Wick rotation enables one to extract some information

on the condensation, it is not yet clear how it can be realized.

In this paper, we consider a slightly different situation which is easier to analyze than

the previous cases. We discuss a condensation starting from a supercritical string (string

with a timelike dilaton gradient). In this case, RG flows can be naturally related to

evolutions in string theory along the ordinary time, and therefore the correspondence of

the RG flows to time evolutions can be shown explicitly. We also show that this analysis

can be used to understand a condensation starting from critical string, by relating the

critical string to a supercritical string which shares the same information on the tachyon

potential with the critical string.

One may consider that a worldsheet description of such a decay is problematic since

a supercritical string theory has a linear dilaton background, and a strong coupling region

may appear in the target spacetime. However, in our description, there is no strong coupling

problem. It is shown in section 2 that, in supercritical string theories, the dilaton varies

in the time direction, and its gradient is negative. This means that the string coupling

is decreasing with time, at least in the vicinity of the fixed point. Moreover, as will be

discussed in section 4, the decrease of the string coupling would persist even when the value

of the tachyon vev becomes large. Therefore, as long as the initial background configuration

(a CFT background with a small tachyon perturbation) is a weakly coupled one, the string

coupling is kept small during the whole time evolution. Note that, in the same reason, if

one applies our description to see an evolution backward in time, then one must face with

a strongly coupled background, and our worldsheet description is no longer valid.1

This paper is organized as follows. In section 2, we review a relation between a two-

dimensional gravity and a string theory. In section 3, an RG flow in a two-dimensional

gravity is related to a time evolution, in particular an on-shell tachyon condensation. In

1One might think that it is ambiguous whether the time evolution in our description is really a decay

from a desired CFT, since one cannot reach the CFT by reversing the time. However, a classical solution of

background fields valid for any time does not necessarily exist, for example, when the tachyon perturbation

is generated as a quantum fluctuation. In such a situation, the classical description of time evolution exists

for t ∈ [t0, +∞) where the fluctuation is created at t = t0.
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section 4, an effective action of graviton, dilaton and tachyon is argued, and the correspon-

dence between an RG flow and a time-dependent solution of the effective action is explicitly

shown. In section 5, the tachyon potential in critical strings (and sub-critical strings, that

is, strings with spacelike dilaton gradients) is discussed. Appendix A summarizes a deriva-

tion of the induced action of the Liouville field.

2. Two-dimensional gravity as a string theory

In this section, we review a relation between a worldsheet RG flow in a two-dimensional

gravity and a time evolution of a string theory [11], based on [12, 13].

Consider a two-dimensional field theory, not necessarily conformal, specified by the ac-

tion S(X; g), where X collectively denotes matter fields and g is a metric on the worldsheet

Σ. Its partition function is defined by

Z =

∫ DXDg

vol(diff)
e−S(X;g)−µ0

R

d2σ
√

g. (2.1)

We introduced the bare cosmological constant µ0 whose purpose will be explained below.

One can always fix the diffeomorphism invariance by choosing a gauge slice

g = eϕĝ(τ), (2.2)

where ĝ(τ) is a representative metric of an equivalence class of metrics parametrized by a

finite number of moduli parameters collectively denoted by τ . The partition function (2.1)

becomes, after gauge fixing,

Z =

∫

DX dτDbDcDϕ e−S(X;eϕĝ,µ0)−S(b,c;ĝ), (2.3)

where the cosmological constant term is included in the matter action. Note that the ghost

action is Weyl invariant.

The path integral measures DX etc. are defined by using g, and therefore they depend

on ϕ as well as ĝ. We assume that the ϕ-dependence of the measures can be extracted to

provide an exponentiated local action, that is,

Z =

∫

DĝX dτDĝbDĝcDĝϕ e−S(X,ϕ;ĝ,µ0)−S(b,c;ĝ). (2.4)

The gauge fixing condition (2.2) is not the only choice. For example, one can also

choose

g = eϕ′ · eω ĝ(τ), (2.5)

for an arbitrary function ω. For this gauge fixing, one obtains

Z =

∫

Deω ĝX dτDeω ĝbDeω ĝcDeω ĝϕ
′ e−S(X,ϕ′;eω ĝ,µ0)−S(b,c;eω ĝ). (2.6)

The latter partition function (2.6) is obtained from (2.4) by a Weyl transformation and

a rename of the field ϕ. The equivalence of (2.4) and (2.6) implies that the gauge-fixed
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theory (2.4) is a CFT with vanishing total central charge. Therefore, one can regard the

partition function (2.4) as a perturbative contribution to a partition function of a string

theory, in which ϕ is also regarded as a coordinate field of a string.

In general, it is difficult to determine the action S(X,ϕ; ĝ, µ0) from the original matter

action S(X; g). However, one can obtain the action explicitly when the original matter

action is conformal. The resulting action is

S(X,ϕ; ĝ, µ0) = S(X; ĝ) + S(b, c; ĝ) +
25 − cm

48π

∫

d2σ
√

ĝ

[

1

2
(∇̂ϕ)2 + R̂ϕ

]

, (2.7)

where cm is the central charge of the matter CFT. A derivation of this action is reviewed

in appendix A. Note that, in general, there is the Liouville potential term µebϕ in (2.7).

We chose the bare cosmological constant µ0 so that µ = 0, which is usually assumed to be

possible.

Interestingly, if the matter CFT has a central charge cm > 25, then the kinetic term

of ϕ has the wrong sign, implying that ϕ describes the time direction of a target spacetime

of the corresponding string theory2. This is one of the key observation for relating a

worldsheet RG flow and a time evolution in a string theory.

It is convenient to rescale ϕ so that the action of ϕ has the usual coefficients. Then

one obtains
1

4π

∫

d2σ
√

ĝ

[

−(∇̂ϕ)2 −
√

cm − 25

6
R̂ϕ

]

. (2.8)

Now one can easily calculate the total central charge of the CFT as follows,

cm − 26 + (1 + (25 − cm)) = 0, (2.9)

which was expected from the general argument.

3. Worldsheet RG flow

3.1 General argument

We would like to consider an RG flow of a two-dimensional gravity. What is meant by the

“RG flow of a two-dimensional gravity” is as follows. Consider a generic two-dimensional

field theory coupled to gravity. In general, the theory may be deformed as one changes the

scale of the theory. The scale can be chosen, for example, by introducing a desired value

of the cut-off for the momentum,

gαβpαpβ ≤ Λ2, (3.1)

and integrating out the large momentum part of fields in the theory. The change of the

theory as Λ varies from +∞ to 0 defines a one-parameter family of two-dimensional gravity

theories. Then one can define a flow in the space of two-dimensional gravity theories,

called the RG flow. However, if g is not just a background and is integrated over all

possible metrics, then the change of Λ is absorbed by a rescaling of g, and the theory is

2In cm < 25 case, ϕ is regarded as the Euclideanized time direction.
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kept intact. Therefore, one also has to fix the scale of g so that the change of scale makes

some non-trivial effects. This fixing can be done, for example, by fixing the area of the

worldsheet,
∫

d2σ
√

g = A. (3.2)

Now one can investigate the RG flow by varying Λ with a fixed A, but equivalently, one

can see the same flow by varying A with a fixed Λ. In fact, one can choose the fixed value

of Λ as large as possible, so that the momentum cut-off Λ can be effectively eliminated.

By the gauge choice (2.2), the condition (3.2) becomes

∫

d2σ
√

ĝ eϕ = A. (3.3)

Therefore, the change of A corresponds to a shift of the zero mode ϕ0 of ϕ. By combining

this relation with the relation between Λ and A, one finds that ϕ0 → −∞ (+∞) corresponds

to the UV (IR) limit of the RG flow.

Recall that ϕ is the time direction if the matter theory is conformal. This implies

that, at least around the UV and the IR limit of the RG flow, the flow would describe a

time evolution of the corresponding string theory, provided that the central charge of the

IR limit is greater than 25. And, as we have shown, there is a CFT (2.4) with vanishing

total central charge which corresponds to a general two-dimensional gravity. Therefore, it

is natural to expect that the whole RG flow of the two-dimensional gravity describes the

whole process of a time evolution of the corresponding string theory.

3.2 Small perturbation

As mentioned above, it is difficult, in general, to obtain a CFT (2.4) from a two-dimensional

gravity which one would like to study. By the same reason, it is difficult to obtain a two-

dimensional gravity whose RG flow corresponds to a tachyon condensation which one would

like to study. However, if one is only interested in the initial and the final stage of the

condensation, it would be rather easy to find which RG flow one has to consider.

For example, suppose that we would like to study a string theory, say bosonic string

compactified on a manifold M with dimM = d. Consider a CFT whose action is

S =
1

4π

∫

d2σ
√

g∇Xm · ∇Xnδmn + SM (g), (3.4)

where SM is a CFT describing a string living in M , and m,n = 1, · · · , 25 − d. We have

set α′ = 1. The central charge of this CFT is cm = 25. Therefore, the Liouville field ϕ

appearing after the gauge fixing does not have a linear dilaton background3 , and the gauge

fixed theory (2.4) is the bosonic string which we would like to study.

Suppose that the bosonic string has a tachyon in the mass spectrum. Let V (k) be

the vertex operator of the tachyon, where k is its momentum in the flat directions. Then

V = V (k = 0) may have the weight ∆ = ∆̄ < 1, that is, this is a relevant operator. One

3Since the overall coefficient of the Liouville action vanishes in this case, some regularization, say an

infinitesimal shift of the central charge which will be eliminated after rescaling ϕ, would be necessary.
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can consider a perturbation of (3.4) by adding the term

λ

∫

d2σ
√

g V, (3.5)

to (3.4). This perturbation induces a non-trivial RG flow. As long as the added term (3.5)

can be treated as a small perturbation, the gauge fixed theory (2.4) can be obtained

explicitly as follows,

S =
1

4π

∫

d2σ
√

ĝ∇Xµ · ∇Xνηµν + SM (ĝ) + λ

∫

d2σ
√

ĝ eαX0

V, (3.6)

where µ, ν = 0, · · · , 25 − d and X0 = ϕ. The exponent α is determined such that the

operator eαX0

V is marginal with respect to the unperturbed theory. Note that the same

procedure can be applied to cm 6= 25 cases, in which a linear dilaton background (2.8)

appears, and also to the cases in which V is irrelevant. In the following, we will consider

cm > 25 cases.

The condition for the operator eαX0

V to be marginal is

∆ +
1

4
α(α + Q) = 1, (3.7)

where Q = 2
√

cm−25
6 . Then one obtains

α± =
1

2

(

−Q ±
√

Q2 − 16(∆ − 1)
)

= −
√

cm − 25

6
±

√

cm − 1

6
− 4∆. (3.8)

In particular, α± is complex if

∆ >
cm − 1

24
> 1, (3.9)

and

α+ > 0 > α−, (3.10)

only for ∆ < 1. If Re(α+) > 0, then the term eαX0

V grows as X0 becomes large, implying

that the RG flow corresponds to a homogeneous condensation of V . Therefore, one can

find the RG flow of the two-dimensional gravity corresponding to a tachyon condensation,

by taking as V the vertex operator of the tachyon.

If the action (3.6) indeed describes an on-shell process, the operator eα±X0

V describes

an on-shell tachyon background. Therefore, there should exist a classical solution

gµν = ηµν , Φ(t) = −2

√

cm − 25

6
t, T (t) ∝ eα±t, (3.11)

of the effective action, as long as |T (t)| is small. Moreover, the flat metric should be a

solution even when |T | is not small. This is because the part of the flat spatial directions

in (3.4) is decoupled from another part SM (g) which is deformed by the perturbation (3.5).

Since we identified the time coordinate t with the Liouville field ϕ (or X0), there is no

ambiguity in the reparametrization of the time coordinate.
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4. Classical solutions for rolling tachyon

4.1 Asymptotic solutions

In order to check the correspondence of the RG flow to an on-shell condensation, it is

necessary to obtain an effective action of the string theory which describes the above on-

shell tachyon condensation. It is in general difficult since there is no convincing reason

to exclude from the effective action all massive states in string theory, while keeping a

tachyon with m2 of order of the string scale. However, the situation would be better when

one restrict oneself to consider only the initial or the final stage of the process. Suppose

that the process would start from or end at a low energy background configuration. Then

in the beginning or the final stage of the process, every fields vary slowly and no massive

states would be excited unless there already exists a non-trivial background for massive

states. Therefore, it would be reasonable to exclude all massive fields from the effective

action as long as one only consider an asymptotic behavior of classical solutions.

In the following, we analyze the effective action of a tachyon T , the graviton gµν and

the dilaton Φ. The form of the effective action whose terms include up to two derivatives

is

S =
1

2κ2

∫

dDx
√−g e−2Φ

[

f1(T )R+4f2(T )(∇Φ)2+2f3(T )∇Φ·∇T−f4(T )(∇T )2−2V (T )
]

.

(4.1)

The functions fi(T ) (i = 1, 2, 3, 4) cannot be determined only by symmetries. Since this

action should reduce to the well-known effective action when T = 0, one obtains f1(0) =

f2(0) = 1, and f3(0) = 0 since there should be no mixing between T and Φ. One can

always choose f4(T ) = 1 by a suitable field redefinition of T . We consider processes in

which |T | << 1. Under this condition, one can ignore the T -dependence of fi(T ). That is,

we analyze

S =
1

2κ2

∫

dDx
√−g e−2Φ

[

R + 4(∇Φ)2 − (∇T )2 − 2V (T )
]

. (4.2)

This effective action is the one studied recently in [14] in which some properties shown below

are already mentioned4. The solution was analyzed numerically in [16][17]. In addition,

one can use the following simple form of the potential,

V (T ) = V0 +
1

2
m2T 2. (4.3)

Since the linear dilaton background (2.8) in the flat metric with T = 0 should be a solution

of this effective action, one obtains

V0 =
cm − 25

3
. (4.4)

We analyze a homogeneous field configuration, by making an ansatz,

ds2 = −dt2 + a(t)2δmndxmdxn, T = T (t), Φ = Φ(t). (4.5)

4The similar analysis was also done in [15].

– 7 –



J
H
E
P
0
3
(
2
0
0
6
)
0
9
5

The equations of motion reduces to the following ones,

D − 2

2(D − 1)
h2 =

1

2
Ṫ 2 + V (T ) − 2φ2 + 2hφ, (4.6)

φ̇ = −hφ + 2φ2 − V (T ), (4.7)

T̈ = −hṪ + 2φṪ − V ′(T ), (4.8)

where

h = (D − 1)
ȧ

a
, φ = Φ̇. (4.9)

One can show that h = 0 is consistent with these equations of motion, and the equations

to be solved are then

2φ2 =
1

2
Ṫ 2 + V (T ), (4.10)

φ̇ = 2φ2 − V (T ). (4.11)

In fact, these two equations imply (4.8) with h = 0. Note that this is also the case for

general V (T ). The fact that the flat string metric is a solution is consistent with the

relation between the RG flows and the on-shell processes, as mentioned before.

The h = 0 solution is stable in the following sense. From the equations of motion, one

can derive
[D − 2

D − 1
h − 2φ

][

ḣ − h(2φ − h)
]

= 0. (4.12)

Under the condition D−2
D−1h = 2φ, (4.6) does not have a non-trivial solution, and one obtains

ḣ = h(2φ − h). (4.13)

Since φ < 0 around any fixed point when cm > 25, as one can see from (2.8), this equation

implies that h = 0 is a stable fixed point.

When h = 0, one can show that

φ̇ =
1

2
Ṫ 2. (4.14)

This indicates that Φ̇ does not decrease. Since φ < 0 as mentioned above, and due to (4.10),

φ has the upper bound −
√

2V0 at which the tachyon T stops at T = 0 when m2 > 0, that is,

T = 0 is a minimum of V (T ). In other words, the tachyon always stops at a minimum of the

potential provided that the value of the potential minimum is positive. The monotonicity

of Φ̇ would be related to the monotonicity of the c-function in the corresponding RG

flow [18]. Recall that the central charge for the Liouville field ϕ is cL = 1 − 3
2Q2 in our

convention, and Q is proportional to the gradient of the dilaton. As we chose a negative

value for Φ̇, then Φ̇2 decreases and cL increasing, compensating the decrease of the matter

central charge along the RG. In this way, the total central charge is kept fixed to be zero,

a necessary condition to interpret the RG flow as an on-shell process of a string theory.

When φ < 0, (4.8) tells that T feels a friction, and as a result, T can stop at a minimum

of the potential V (T ). This final field configuration would be related to the IR fixed point
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of the RG flow. Note that φ < 0 ensures that one can keep the string coupling as weak

as possible along the process (in fact, the string coupling decreases in time), so quantum

corrections to the classical solution is negligible.

Let us examine the time-dependence of the solution around the trivial solution T =

0, 2φ2 = V0. Assume that T (t), Ṫ (t) are both small. Then, at the linearized level, one

obtains

φ̇ = 0, (4.15)

T̈ = −
√

2V0Ṫ − m2T, (4.16)

from the equations of motion. Note that, as show above, h = 0 is a solution even beyond

the linearized level. These equations are easily solved, and one obtains

Φ(t) = Φ0 −
√

2V0t, T (t) = Aea+t + Bea−t, (4.17)

where

a± = −
√

V0

2
±

√

V0

2
− m2. (4.18)

This solution coincides with (3.11) when V0 is given by (4.4) and

m2

4
= ∆ − 1, (4.19)

as expected5. This coincidence indicates nothing but the fact that the equation of motion

of the tachyon is also obtained by requiring the conformal invariance of the worldsheet

theory.

When m2 < 0, that is T = 0 is a maximum of V (T ), ea+t is always growing, which

should be the desired behavior for a perturbation by a tachyon vertex (∆ < 1). On the

other hand, when m2 > 0, a minimum of V (T ), T (t) is always damping exponentially, in

good correspondence to an irrelevant perturbation. For 0 < m2 < V0

2 it is overdampling,

and for m2 > V0

2 it exhibits a damped oscillation.

It has been shown that the RG flows in the vicinity of UV and IR fixed points are well

described by classical solutions around a maximum and a minimum of the potential V (T ),

respectively. In other words, the physical picture gained in the study of open string tachyon

condensation still persists in the case of closed string tachyon condensation localized in a

compact space, provided that cm > 25. When there is an RG flow which connects a UV

CFT with a tachyon and an IR CFT, then in the effective action there is a potential which

has a maximum and a minimum which are next to each other. The difference of the height

of these extrema is

V (UV) − V (IR) =
cm,UV − cm,IR

3
. (4.20)

Therefore, the shape of the tachyon potential can be determined, except for the positions of

the extrema, by examining various RG flows. It will be very exciting if the relation (4.20)

is confirmed, for example, by using string field theory.

5For the light-cone quantization of string theory in the linear dilaton background, see [19].
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4.2 Beyond linearized approximation

Let us argue the form of the effective action beyond the linearized approximation. One

would like to find a solution of (4.1), but the action has many unknown functions fi(T ), and

it is difficult to extract general properties of solutions. Fortunately, some of the functions

can be fixed from the following argument on a worldsheet theory.

Consider a worldsheet theory in a background metric, dilaton and tachyon,

S =
1

4π

∫

d2σ
√

h
[

∇Xµ∇Xνgµν(X) + Φ(X)Rh

]

+ SM (h) +

∫

d2σ
√

h T (X)V, (4.21)

where ∇ and Rh are the covariant derivative and the scalar curvature, respectively, defined

by the worldsheet metric denoted by h in this subsection. Note that h is not dynamical.

Suppose that T (X) = T = const. and gµν , Φ does not depend on fields of SM (h).

Then the worldsheet theory consists of two theories S(X; g,Φ), SM (T ) decoupled from each

other. The energy-momentum tensor of the total theory is a sum of those of two theories,

and therefore, the beta-functionals are also a sum of two functionals. For examples,

βµν(g) = Rµν + 2∇µ∇νΦ + · · · , (4.22)

β(Φ) =
D − 26

6
− 1

2
∇2Φ + (∇Φ)2 + · · · , (4.23)

where · · · indicates terms including T , and µ, ν = 0, · · · ,D − 1. These beta-functionals

should be derived from (4.1) as the equations of motion, even when T is not small. There-

fore, one concludes that f1(T ) = f2(T ) = 1. One may redefine T so that f4(T ) = 1. Now

the action to be analyzed becomes slightly simple as follows,

S =
1

2κ2

∫

dDx
√−g e−2Φ

[

R + 4(∇Φ)2 + 2f(T )∇Φ · ∇T − (∇T )2 − 2V (T )
]

. (4.24)

As mentioned before, f(T ) should satisfies f(0) = 0, but otherwise one cannot impose

further constraints on the form of f(T ) by the above observation. One way to restrict f(T )

would be to require that solutions of the equations of motion derived from (4.24) have a

dilaton solution whose derivative grows monotonically.

Interestingly, even if one does not know the explicit form of f(T ), one can show that

the string coupling always decreases during the time evolution, under a natural assumption.

The equations of motion derived from (4.24) imply the following equation,

D − 2

D − 1
h2 − 4hφ − Ṫ + 2f(T )φṪ + 4φ2 − 2V (T ) = 0. (4.25)

Now we assume that h = 0 is a solution of the equations of motion. This assumption seems

to be natural for a homogeneous tachyon condensation since the corresponding RG flow

does not change the free boson CFT part of (4.21). That is, the metric in the string frame

should be kept fixed during the RG flow. If h = 0, then one obtains

(4 + f(T )2)φ2 = (Ṫ − f(T )φ)2 + 2V (T ). (4.26)

This equation implies that, as long as V (T ) > 0, φ cannot change the sign. For example,

during a decay from a supercritical string to another supercritical string, the string coupling

is always decreasing. Therefore, our description of such a decay is valid if one starts with

a weakly coupled background.
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5. Lift of critical strings to supercritical strings

As we have shown, an RG flow of a two-dimensional gravity with cm > 25 describes an

on-shell tachyon condensation from a potential maximum to a minimum. By using this

relation, one can qualitatively know the shape of the tachyon potential from various RG

flows. However, for the cm ≤ 25 cases, RG flows cannot be directly related to a time

evolution since in this case the Liouville field describes a spacelike direction, as one can see

from (2.7). In addition, classical solution of the effective action (4.2), in which V (T ) has a

negative value at a minimum, does not always converge to a static solution corresponding to

the potential minimum [14]. Therefore, the relation between RG flows and time evolutions

is not yet unclear in this case, although they might be related by a suitable Wick rotation.

In this section, we argue that at least the shape of the potential V (T ) can be read off

from RG flows, even in the cm ≤ 25 cases. The idea is that one can relate to a (sub)critical

string (cm ≤ 25) a supercritical string (cm > 25), without changing the shape of the

potential.

Consider, again, the following worldsheet theory,

S =
1

4π

∫

d2σ
√

h
[

∇Xµ∇Xνgµν(X) + Φ(X)Rh

]

+ SM (h) +

∫

d2σ
√

h T (X)V, (5.1)

where µ, ν = 0, ·,D − 1. Suppose that this corresponds to a (sub)critical theory, that is,

D + cM ≤ 26, where cM is the central charge of SM . The beta-functionals of this theory

should be a linear combination of the equations of motion derived from (4.24). One obtains

βµν(g) = Rµν + 2∇µ∇νΦ −∇µT∇νT + ∇µΦ∇νF (T ) + ∇νΦ∇µF (T )

−1

2
gµν [2∇Φ · ∇F (T ) −∇2F (T )], (5.2)

β(Φ) =
1

2
V (T ) − 1

2
∇2Φ + (∇Φ)2 − D − 2

4
∇Φ · ∇F (T ) +

D − 2

8
∇2F (T ), (5.3)

β(T ) ∝ ∇2T − 2∇Φ · ∇T − V ′(T ) + f(T )[−∇2Φ + 2(∇Φ)2], (5.4)

where F ′(T ) = f(T ). βµν(g) and β(Φ) are determined so that they reduce to the well-know

functionals when T = 0. Note that V (0) only appears in β(Φ), which is important below.

Next, consider the following worldsheet theory,

S′ =
1

4π

∫

d2σ
√

h
[

∇Xµ∇Xνgµν(X) + Φ(X)Rh

]

+ SM(h) +

∫

d2σ
√

h T (X)V

+
1

4π

∫

d2σ
√

h∇Y k∇Y lδkl, (5.5)

where k, l = 1, · · · , d. The number d is chosen so that D + d + cM (IR) > 26. The beta-

functionals of S′ are just a sum of those of S and those of free bosons Y k. The conformal

anomaly of Y k theory is simply

T (Y )a
a = − d

12
Rh. (5.6)
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Therefore, the beta-functionals of S′ have the same form as (5.3)(5.4)(5.4), with V (T )

replaced with Ṽ (T ) = V (T ) + d
3 . Suppose that a solution exists for βµν(g) = 0 etc. for

S′. At least when f(T ) = 0, a solution always exists as long as V (T ) > 0 in a range of T .

Then it indicates that a background

GMN =

[

gµν(X) 0

0 δkl

]

, Φ = Φ(X), T = T (X), (5.7)

is a classical solution of the effective action of the corresponding supercritical string.

Consider in the opposite way. Suppose that there is an effective action of a supercritical

string. The fields in the action are GMN (X,Y ), Φ(X,Y ) and T (X,Y ). By making the

ansatz (5.7), the equations of motion reduce to the conditions that (5.3)(5.4)(5.4), with

V (T ) replaced with Ṽ (T ), all vanish. By the general covariance in D + d dimensions, the

equations of motion for GMN (X,Y ), Φ(X,Y ) and T (X,Y ) should have the same form as

those of gµν(X), Φ(X) and T (X), except for the potential. Therefore, the effective action

should be

S =
1

2κ2

∫

dD+dx
√
−G e−2Φ

[

RG + 4(DΦ)2 + 2f(T )DΦ · DT − (DT )2 − 2Ṽ (T )
]

, (5.8)

where D and RG are the covariant derivative and the scalar curvature, respectively, defined

by G.

We have shown that the two string theories (5.1) and (5.5) have essentially the same

tachyon potential. Therefore, one can determine V (T ) by determining Ṽ (T ) in the way

mentioned in the previous section.

It should be emphasized that, when V (T ) is not always positive, the existence of a

minimum of V (T ) does not always imply that there is a dynamical process to reach a static

solution corresponding to the minimum. In this case, it is not yet certain that RG flows

would be a nice tool to find the final state of a tachyon condensation.

6. Discussion

We have shown that RG flows can be use to describe on-shell tachyon condensations in

supercritical strings. It seems natural to expect that the same strategy can apply to

(sub)critical strings, and an observation was done in [11]. However, there is a difficulty

in relating RG flows and time evolutions in these cases, as mentioned before. The main

problem is that the Liouville field is spacelike. A naive Wick rotation would be possible to

do for the case of a small perturbation around a critical string, but when there is a non-

trivial dilaton background, such a Wick rotation would be impossible without changing the

central charge. A recent study [20] of the Liouville theory and its analytic continuation

would be helpful to understand this situation. One might be possible to extract a spacetime

physics from correlation functions of the Liouville theory obtained from the Euclidean

theory via an analytic continuation.

One may think that our procedure to analyze tachyon condensations can also apply to

a condensation of bulk tachyons. We expect that it is possible in principle. To analyze a
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bulk tachyon condensation, one would consider a two-dimensional gravity perturbed by a

term (3.5) in which V is the unit operator. Then, in the gauge-fixed action (3.6), the added

term becomes the ordinary Liouville potential which is an exactly marginal perturbation.

Therefore, the final state of the condensation is nothing but the flat background with

infinitely large tachyon background. Recall that in the case of localized tachyons, in which

V is a non-trivial operator, the back-reaction to the background from the growing tachyon

is implemented by a non-trivial RG flow, so that one does not need to deal with such a

large tachyon background. In the bulk tachyon case, one has to treat such a background

directly.

When there is the Liouville potential in the time-direction, closed strings become heav-

ier with time [21]. The same phenomenon occurs in the case of open string tachyons [22][23].

In this case, since open strings become heavier due to a boundary interaction with a tachy-

onic background, the endpoints of the strings tend to pair-annihilate, and open strings turn

into closed strings. This is a qualitative explanation of the decay of unstable D-branes. See

also [24]. Is there a physical process which turns the heavy closed strings into the other

lighter states? If not, the heavy closed strings will fill the space, resulting in a singularity

like the one discussed in [14]. Naively, there seems to be such a process; the reverse process

of D-brane decay. Since the dilaton may become large without bound during a tachyon

condensation, D-branes may become lighter. Then it is tempting to conjecture that closed

strings would turn into a kind of D-branes, and the final state of the bulk tachyon conden-

sation would be a theory whose fundamental degrees of freedom are D-branes.

It would be worth mentioning on a classical solution of (4.2) with V0 = 0, m2 > 0.

In this case, a± in (4.18) are purely imaginary, and the corresponding solution is periodic.

However, one can see from the equations of motion that the exact solution cannot be

periodic. In fact, the deviation from the periodic solution is the next-to-leading order. For

example, φ̇ is the second order of fluctuations, and therefore the increase of φ is extremely

small.

How can one find this slowly varying behavior in the CFT side? To see this, one has to

find a gauge-fixed worldsheet action without treating the tachyon vertex as a perturbation.

α± is purely imaginary when cm = 25 (V0 = 0) since Q = 0, but Q = 0 is attained at

t → +∞ limit. Since for large positive t the background fields vary very slowly, one can

approximate the background by a linear dilaton background with a small but non-zero Q.

Then Re(α±) is non-zero, and the damping behavior still exists. The slow damping in the

classical solution is due to the decrease of Re(α±) with time.

It is very peculiar that no matter how large m2 is, T damps extremely slowly. Note

that φ is almost zero, so the Einstein metric is equal to the string metric up to an overall

factor, indicating that T also damps slowly in the Einstein frame. It may be interesting if

this phenomenon has some implications to cosmology. Note that the relation between the

string metric g
(s)
µν and the Einstein metric g

(E)
µν is

g(E)
µν = e−

4

D−2
Φg(s)

µν . (6.1)

Since we chose Φ̇ < 0, the Einstein metric is slowly expanding.
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The slow damping behavior is also plausible for the relation between RG flows and time

evolutions. For V0 = 0 case, the overall coefficient of the Liouville field in (3.6) vanishes.

This is not a problem since by taking into account a change of central charge due to the

perturbation, the coefficient, say C, does not vanish in a finite ϕ0. However, C should be

decreasing as ϕ0 → +∞, so C would be a function C(ϕ0). Then, to normalize the kinetic

term of the Liouville theory,
√

C should be included in ϕ, and as a result, the zero mode

ϕ′
0 of the normalized field is

ϕ′
0 =

√

C(ϕ0)ϕ0. (6.2)

If C decreases too fast, the time ϕ′
0 does not correspond in one-to-one to the RG scale ϕ0.

One may be able to consider a rolling of T in which initially V (T ) > 0 and finally

V (T ) < 0. Assuming, for simplicity, that the simple action (4.2) is valid in this case. In

this case, φ = 0 does not imply Ṫ = 0 because of (4.10), and φ can be positive. Then

h = 0 solution is no longer a stable solution, as one can see from (4.13). It will be difficult

to understand the late time behavior of this solution, but it would be anticipated that a

simple linear dilaton solution cannot be the final configuration. This phenomenon would

be related to a behavior of the RG flows of two-dimensional gravity, mentioned in [25],

which does not exist in the RG flows of two-dimensional field theory.
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A. Derivation of Liouville action

Consider a two-dimensional field theory coupled to gravity which is defined by the following

partition function,

Zgravity =

∫ DggDgX

vol(diff)
e−S(X;g)−µ0

R

d2σ
√

g. (A.1)

Suppose that S(X; g) is conformally invariant and its trace anomaly does not have a con-

stant term. Note that DgX, Dgg are defined in terms of g.

One can fix the diffeomorphism invariance by choosing the following form of the metric

g′ = eϕĝ(τ), (A.2)

where ĝ(τ) is a representative metric parametrized by the moduli parameters {τ}, in each

orbit. Then the gauge-fixed form of the partition function is

Zgravity =

∫

dτDg′ϕDg′bDg′cDg′X e−S(X;g′)−S(b,c;g′)−µ0

R

d2σ
√

g′ . (A.3)
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The measure Dg′ϕ is not a convenient one since its dependence on ϕ itself is com-

plicated. It is assumed in [12][13] that Zgravity is equivalent to the following partition

function,

Z =

∫

dτDĝϕDĝbDĝcDĝX e−S(X;ĝ)−S(b,c;ĝ)−S(ϕ;ĝ), (A.4)

where

S(ϕ; ĝ) =

∫

d2σ
√

ĝ
[

a(∇̂ϕ)2 + bR̂ϕ + µecϕ
]

. (A.5)

This can be rephrased as the equivalence of measures,

Dg′ϕDg′bDg′cDg′X = DĝϕDĝbDĝcDĝX e−S(ϕ;ĝ), (A.6)

since S(X; ĝ), S(b, c; ĝ) are conformally invariant.

The metric g′ can also be written as g′ = eϕ′

eσ ĝ for an arbitrary function σ. Then, in

a similar way, one obtains

Dg′ϕ
′Dg′bDg′cDg′X = Deσ ĝϕ

′Deσ ĝbDeσ ĝcDeσ ĝX e−S(ϕ′;eσĝ), (A.7)

this implies

DĝϕDĝbDĝcDĝX e−S(ϕ;ĝ) = Deσ ĝϕ
′Deσ ĝbDeσ ĝcDeσ ĝX e−S(ϕ′;eσĝ). (A.8)

Therefore, one concludes that the total theory Z must be conformally invariant. This

requirement determines the coefficient a, b, c in S(ϕ; ĝ).

Let us determine S(ϕ; ĝ). For simplicity, suppose µ = 0. We assume that this is

possible by tuning µ0 to the right value. One can show that

Deσ ĝXDeσ ĝbDeσ ĝc = e
cm−26

48π
SL(σ;ĝ)DĝXDĝbDĝc, (A.9)

where cm is the central charge of the matter part, and

SL(σ; ĝ) =

∫

d2σ
√

ĝ
[1

2
(∇̂σ)2 + R̂σ

]

. (A.10)

It should be noted that the Liouville potential in SL is absent since it has been assumed

that the trace anomaly of the matter part does not have a constant term. See chapter 3

of [26].

There is another argument for the absence of the Liouville potential. Suppose that the

conformal anomaly only comes from the measure,

Deσ ĝX = e
c

48π
SL(σ;ĝ)DĝX. (A.11)

Then the following equality

Deσ1eσ2 ĝX = e
c

48π
SL(σ1+σ2;ĝ)DĝX

= e
c

48π
SL(σ1;eσ2 ĝ)e

c
48π

SL(σ2;ĝ)DĝX. (A.12)

or

SL(σ1 + σ2; ĝ) = SL(σ1; e
σ2 ĝ) + SL(σ2; ĝ), (A.13)
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should hold. However, the general Liouville action

SL(σ; ĝ, µ′) =

∫

d2σ
√

ĝ
[1

2
(∇̂σ)2 + R̂σ + µ′eσ

]

(A.14)

satisfies instead,

SL(σ1 + σ2; ĝ, µ′) = SL(σ1; e
σ2 ĝ, µ′) + SL(σ2; ĝ, µ′) − µ′

∫

d2σ
√

ĝ eσ2 . (A.15)

Therefore, the Weyl transformation (A.11) of the measure is consistent only if µ′ = 0.

Since µ = 0, the action of ϕ is free, up to an unusual coupling to the worldsheet

curvature. So it is natural to assume that Dĝϕ is the measure of a free boson. Then its

Weyl transformation is

Deσ ĝϕ = e
1

48π
SL(σ;ĝ)Dĝϕ. (A.16)

Therefore, to maintain the conformal invariance, S(ϕ; ĝ) must satisfies

S(ϕ − σ; eσ ĝ) = S(ϕ; ĝ) +
cm − 25

48π
SL(σ; ĝ). (A.17)

This determines 2a = b = 25−cm

48π
, and therefore

S(ϕ; ĝ) =
25 − cm

48π

∫

d2σ
[1

2
(∇̂ϕ)2 + R̂ϕ

]

. (A.18)

Next, let us consider the case µ 6= 0. As long as Re c 6= 0 in (A.5), ϕ becomes free

at ϕ → +∞ or ϕ → −∞. So around an either limit, S(ϕ; ĝ) should approach (A.18).

Therefore a, b are the same values as above. Then, c is determined by requiring that ecϕ is

a marginal operator of the CFT (A.18). In the Liouville theory, the Liouville potential is

actually an exactly marginal operator. So the value of c, determined by treating ecϕ as a

perturbation, also correct for a finite µ.
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